Load Forecasting Research of Power System Based on Fuzzy Sets Algorithm

نویسندگان

  • Qihui Wang
  • Yuhuai Wang
  • Huixi Zhang
  • Yaping Sun
چکیده

In this paper, adjust the system parameters back-propagation algorithm based on fuzzy similarity interval type proposed by the fuzzy rule base to streamline redundant fuzzy sets, we can also merge with the means to reduce the number of redundant fuzzy rules, then singular value decomposition method is preferred fuzzy rules. The algorithm can effectively eliminate the adverse effects caused by redundant fuzzy rule, which improve the interpretability of fuzzy rules to reduce the computational complexity of the fuzzy reasoning process, and to improve the approximation accuracy of the system. Based on the long-term and short-term load power load characteristics analysis, to identify the influence of the load itself changes and related factors, gray system theory, neural network model and chaotic time series methods, models and methods for forecasting power load range were research. Examples verified, interval prediction has better precision, demonstrate the effectiveness of the interval prediction algorithm, the research results can be used in power market analysis and forecasting systems, power system operation and provide scientific basis for management decisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Stage Fuzzy Load Frequency Control Based on Multi-objective Harmony Search Algorithm in Deregulated Environment

A new Multi-Stage Fuzzy (MSF) controller based on Multi-objective Harmony Search Algorithm (MOHSA) is proposed in this paper to solve the Load Frequency Control (LFC) problem of power systems in deregulated environment. LFC problem are caused by load perturbations, which continuously disturb the normal operation of power system. The objectives of LFC are to mini small size the transient deviati...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Short-Term Load Forecasting in Power Systems Using Adaptive Fuzzy Critic Based Neural Network

Load forecasting constitutes an important tool for efficient planning and operation of power systems and its significance has been intensifying particularly, because of the recent movement towards open energy markets and the need to assure high standards on reliability. Accurate load forecasting is of great importance for power system operation. It is the basis of economic dispatch, hydrotherma...

متن کامل

A New Implementation of Maximum Power Point Tracking Based on Fuzzy Logic Algorithm for Solar Photovoltaic System

In this paper, we present a modeling and implementation of new control schemes for an isolated photovoltaic (PV) using a fuzzy logic controller (FLC). The PV system is connected to a load through a DC-DC boost converter. The FLC controller provides the appropriate duty cycle (D) to the DC-DC converter for the PV system to generate maximum power. Using FLC controller block in MATLABTM/Simulink e...

متن کامل

A Robust Discrete FuzzyP+FuzzyI+FuzzyD Load Frequency Controller for Multi-Source Power System in Restructuring Environment

In this paper a fuzzy logic (FL) based load frequency controller (LFC) called discrete FuzzyP+FuzzyI+FuzzyD (FP+FI+FD) is proposed to ensure the stability of a multi-source power system in restructured environment. The whale optimization algorithm (WOA) is used for optimum designing the proposed control strategy to reduce fuzzy system effort and achieve the best performance of LFC task. Further...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016